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TAIlLE IX. Thermal Griineisen's first and second parameters for a -Aho.. 

fJ Cp V B' Tem(oerature 
OK) (X lO-6j"K ) (cal/ mol. OK ) (ems/mol) (X10U dyn/cm2) 'YG(thermal) (1+ TfJ'YG) 

4.2 ? 0 .0021 
77 1.08 1.50 

100 2 .40 3 .07 
150 6. 15 7.64 
200 10 .23 12 .22 

273 14 .88 17 .482 
298 16.41 18.98 
400 20 . 10 23 .38 
500 22 .05 25 .55 
600 23 .55 26 .85 

700 24 .69 27 .75 
800 25.65 28 .44 
900 26 .55 28 .99 

1000 27.42 29.47 
1100 28.14 29.90 

1200 28 .68 30.29 
1300 29.34 30.66 

of volume is evidently invalid (especially in the case of 
the longitudinal and shear moduli), since the last term 
in Eq. (5.2) vanishes if M =M(V) . 

5.2. Griineisen's Parameters and Equation of State 
for Alumina 

Essentially, there are two Grtineisen's parameters; 
one given by 

"'Ia={3V / Cpx' ={lVB'/Cp="'IG(thermal) (5.4) 

and the other 

1/Ia= -[a(lnB') /aT/a(ln V) / aT]p 

= - (l / {lB') (aB'/aT) p=1/Ia(th ermal)' (5.5) 

where {3 is the coefficient of volume thermal expansion, 
V is the volume, B' is the adiabatic bulk modulus, Cp is 
the specific heat at constant pressure, and x' is the 
adiabatic compressibility. These parameters give a 
measure of the anharmonicity of the interatomic 
potential, and they are useful in the study of the solid 
equation of state.26-30 In Table IX, these parameters are 
tabulated as a function of temperature. The data on 
thermal expansion are due to Wachtman et al.3 and 
Schauer.' The data on specific heats were taken from 
tables presented by the National Bureau of Standards.s 

26 E. Gruneisen, in Handbuch der Physik, H. Geiger and K. 
Scheel, Eds. (Springer-VerJag, Berlin, 1926), Vol. X, Pt. I. For 
an English translation, see NASA Tech. Rept. No. RE2-18-59W 
(Feb. 1959) . 

27 J. C. Slater, Introduction to Chemical Physics(McGraw-Hill 
Book Co., New York, 1939) . 

28 F. Birch, Phys. Rev. 71, 809 (1947) j J. Geophys. Res. 57, 
227 (1952). 

29 T. H. K. Barron, Phil. Mag. 7(46), 720 (1955) j Ann. Phys. 
(New York) 1, 77 (1957). 

80 J. J. Gi lvarry, J. Appl. Phys. 28, 1253 (1957) j J. Appl. 
Phys. 33,3595 (1962). 

25.538 25.747 
25 .539 25 .727 1.13 1.000094 
25.540 25 .691 1.23 1.000294 
25.545 25 .638 1.26 1.001162 
25 .555 25 .593 1.31 1.002677 

25.578 25.512 1.33 1.005389 
25.580 25 .507 1.35 1.006636 
25 .631 25.270 1.33 1.010698 
25.689 25.053 1.33 1.014632 
25 .748 24.833 1.34 1.018935 

25 .820 24.602 1.35 1.023340 
25.885 24.396 1.36 1.027926 
25.950 24.162 1.37 1.032787 
25.022 23.950 1.39 1.037993 
26.097 23.700 1.39 1.043054 

26.164 23.470 1.39 1.047815 
26 .235 23.197 1.39 1.053077 

It is seen here that the first Grlineisen parameter, often 
termed Grtineisen's ratio, remains almost constant with 
temperature above 2000K (which is about 0.20D ). This 
constancy supports the Grtineisen theory of solids. 

The parameters defined by Eqs. (SA) and (5.5) are 
thermal Grtineisen's ratio and thermal Grlineisen's 
anharmonic parameter, respectively, and it can be 
shown easily that they are related to the pressure 
derivatives of the elastic moduli. The relationship 
between "'la and (dB/dp) , with two simplifying as­
sumptions,27 was given first by Slater. The Slater 
rela tion27 is 

(5.6) 

and from our data "'ISlater = 1.95. The general relationship 
between "'la and (dM / dp) is based on a correspondence 
relation that, within the quasiharmonic approximation,29 

"'IG(thermal) ="'Ia(aooustic) , (5.7) 
where 

where 
"'1 ;= -d(lnv;) / d(ln V) , (5.9) 

and Ci(l' i ) are Einstein's specific heats of the ith mode 
having the frequency I' i . In terms of the single-crystal 
elastic constants and their first pressure derivatives, 
Smith and his collaborators31 presented the correspond­
ing expression for Eq. (5.9). For isotropic solids (like a 
strain-free glass and a polycrystalline aggregate), the 
equivalent expression for Eq. (5.9) is 

(5.10) 

31 C. S. Smith, D. E. Schuele, and W. B. Daniels, in Physics 
of Solids at High Pressures, C. T. Tornizuka and R. M. Emrick, 
Eds. (Academic Press Inc., New York, 1965) . See also D. E. 
Schuele and C. S. Smith, J. Phys. Chem. Solids 25, 801 (1964). 
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where the sUbscript j refers to either longitudinal or 
transverse modes so that 

(5.11) 
and 

(5.12) 

The bar over the gammas indicates 1;=/';(r/>, 0), and 
these 'Y; are isotropic. The physical implication of 
Eqs. (5.11) and (5.12) is that there are acoustic longi­
tudinal modes with the longitudinal velocity VI and a 
corresponding longitudinal Grlineisen mode-gamma 'YI, 
and acoustic transverse modes with transverse velocity 
V, and a corresponding Griineisen mode-gamma 'Y1.31 

Thus, the total Grlineisen parameter 'Y is given by (as T 
approaches zero) 

1= ('YI/3) (Vm/VI) 3+ (2'Yt/3) (t'm/Vt)3=10. (5.13) 

At high temperatures, we find a similar expression 
to that of Smith et at.31 to_be 

(5.14) 

However, it is noted that since at high temperatures the 
optical and short-wave acoustic modes are excited the 
mode-gammas corresponding to these vibrations will be 
affected by these modes. Equation (5.14) does not take 
into account these modes; therefore, 'Yoo obtained by 
Eq. (5.14) will not give the exact value of the high­
temperature limit of the Grlineisen parameter, but 
instead it gives an approximate value which is accurate 
only in a first-order approximation. 

Using our acoustic data, the calculated mode-gammas 
are as follows: 'Y1=1.58 and 1t=1.22. And the limiting 
values are: 'Yo= 1.26 and 'Yoo = 1.58, and these may be 
compared with /'O(thermal) tabulated in Table IX. 

The second Grlineisen parameter Y;O(thermal) can be 
found from the acoustic data also. It has been shown by 
Birch28 •32 that . 

- (1/(3BT) (aBT /aT)p= (aBT /ap)r=y;'O(scoustich 

(5.15) 
where 

(aBT /ap)T= (aB'/aph+c=Y;C(acoustic)' (5.16) 

The dimensionless constant C is given by Overton's 
relation2 

- -C=[(A -1)/ AJ[(2/(3) (a InBT faT) -lJ 

+[(AL 1)/ A2J(aB'/ap)T 

+[(A-l)/AJ2[1+{1/(3) (a In(3/aT)pJ, (5.17) 

where A =Cp/C~=B'/BT= l+~T/'o and for alumina at 
room-temperature C = 0.04. Since (dB' / dp h-298°K = 

U F. Birch, J. Geophys. Res. 73,817 (1968). 

4.19. Y;O(acoustic) =4.23 according to Eq. (5.16); this is in 
good agreement with Y;Clth ermal) =4.1 but it disagrees 
with 3.6 found for the Lucalox.13 

It is frequently assumed by some authors33 that the 
ratio of specific heats (i.e., Cp/ C.) is unity. The im­
plication of this assumption is that the lattice vibrations 
of solid under consideration are harmonic and that the 
quantity given by «(3T/'o) and its temperature depend­
ence is zero. This is a misleading assumption, and 
because of this assumption inconsistent formalisms are 
often found in the literature. Aluminum oxide is a 
relatively incompressible material (thus relatively Iow 
expansivity). However, as evident from Table IX, the 
value of ({3T/,o) at room temperature is 6.6X 10-3 and at 
Tr-.JOD , ({3T/,o) is 33.4X1o-3. At higher temperatures, (3 
and /'0 approach a constant value; thus, the quantity 
({3T/,o) is proportional to temperature. Since «(3T/'o) is 
inversely proportional to the lattice thermal con­
ductivity, the high-temperature conductivities of 
alumina can be understood from the data. 

Figure 5 shows a plot of experimental compression 
points of Bridgman (0-30 kbar) 9 and also those of 
Hart and Drickamer (0-300 kbar) .10 Also included are 
the shock-wave data of McQueen and Marshll on both 
single-crystal (500-1500 kbar) and polycrystalIine 
(300- 1300 kbar) aluminas. The lines drawn in the 
figure are the results of the Murnaghan equation of 
state24 using the acoustic parameters defined at different 
boundary conditions. A similar curve to Fig. 5 has been 
given by Anderson.34 but Anderson used the acoustic 
parameters derived from the Lucalox material. What is 
apparent in Fig. 5 is that the Murnaghan parameters 
evaluated from both the single-crystal and polycrystal­
line acoustic data give a reasonable description of the 
pressure-volume relation for the e~"perimental com­
pression points including the shock-wave data. Finally, 
it may be mentioned that the Murnaghan equation of 
state and effects of evaluating the Murnaghan param­
eters at different thermodynamic boundary conditions2 

can not be seen in the scale of a plot of the kind shown in 
Fig. 5. Thus, on the basis of this consideration and 
following Murnaghan,24 the most probable equation of 
state for alumina is 

v /Vo= (1 + 1.653XIO-3p)-o.2364 (5.18) 

and this will describe the pressure-volume relation to 
pressures of a few megabars. 

5.3. The Debye Temperature 

Values of the Debye temperature as a function of 
temperature were calculated from the elastic moduli, 
and these have been tabulated in the last column of 
Table VII. The low-temperature limit of the Debye 

a3 Y. A. Chang, J. Phys. Chem. Solids 28,697 (1967). 
"0. L. Anderson, J. Phys. Chem. Solids 27, 547 (1966). 


